
A Comparative Study of Algorithms for
Computing Continued Fractions of

Algebraic Numbers�

Richard P� Brenta� Alfred J� van der Poortenb and Herman J� J� te Rielec

aa Computer Sciences Laboratory�
Research School of Information Sciences and Engineering�

Australian National University� Canberra� ACT ���� Australia
rpb�nimbus�anu�edu�au b

b ceNTRe for Number Theory Research�
School of Mathematics� Physics� Computing and Electronics�

Macquarie University� Sydney NSW ���� Australia
alf�mpce�mq�edu�au c

c CWI� Department of Numerical Mathematics�
Kruislaan ���� ���	 SJ Amsterdam� The Netherlands

herman�cwi�nl

� Introduction

The na��ve way to compute the continued fraction of a real number � � � is
to �nd a very accurate numerical approximation to �� and then to iterate
the well known truncate�and�invert step which computes the next partial
quotient a � b�c and the next complete quotient �� � ����� a	� We call
this the basic method � In the course of this process precision is lost� and
one has to take precautions to stop before the partial quotients become
incorrect� Lehmer 
�� gives a safe stopping criterion� and a trick to reduce
the amount of multi�length arithmetic� leading to the so�called indirect

method 
��� Sch�onhage 
��� describes an algorithm for computing the
greatest common divisor of u and v� and the related continued fraction
expansion of u�v� inO�n log� n log logn	 steps if neither u nor v exceed �n�

A disadvantage of the basic method is that if one wishes to extend
the list of partial quotients computed from an initial approximation of ��
one has to compute a more accurate initial approximation of �� compute
the new complete quotient using this new approximation and the partial
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quotients already computed from the old approximation� and then ex�
tend the list of partial quotients using that new complete quotient �we
notice that Shiu in 
�� p� ����� slips in suggesting that all the previous
calculations have to be repeated� of course the partial quotients already
computed do not have to be recomputed	�

Bombieri and Van der Poorten 
��� and Shiu 
��� have recently recalled
a remedy for this problem� They give a formula for computing a rational
approximation of the next complete convergent from the �rst n partial
quotients� From that complete convergent some n new partial quotients
can be computed� So each step provides an approximate doubling of the
number of partial quotients� Shiu calls this the direct method � To start
the direct method� a few partial quotients are computed with the basic
method� In 
�� this approach is proposed for algebraic numbers �zeros of
polynomials de�ned over Z	 of degree � �� whereas Shiu also applies it
to more general numbers� namely to transcendental numbers de�ned as
zeros of functions for which the logarithmic derivative at some rational
point can be computed with arbitrary precision� This includes numbers
such as �� log �� and log �� For each of thirteen di�erent such numbers
Shiu computes �� ��� partial quotients� Their frequency distributions are
compared with the one which almost all numbers should obey according
to the Khintchine�L�evy theory 
� ��� No signi�cant deviations from this
theory are reported�

Curiously� Shiu does not refer to what we will call the polynomial

method for algebraic numbers 
�� �� ��� of degree � �� which computes
the partial quotients of � using only the coe�cients of its de�ning polyno�
mial� Moreover� Shiu gives neither implementational details of his direct
method� nor of the indirect method mentioned above �which he applies
to four numbers which cannot be handled by the direct method	� He con�
cludes that his direct method is �superior in the sense that the computing
times for a modest number of partial quotients using the indirect and the
direct method are similar� whereas it becomes prohibitively long for the
basic algorithm��

This is not quite a reproducible conclusion� Moreover� the polynomial
method is not included in Shiu�s study� This motivated us to produce
a more explicit comparison of the various methods� We have used the
occasion to compute some ��� ��� partial quotients of six di�erent alge�
braic numbers and to test those collections of partial quotients against
the expectation for the partial quotients of �random� real numbers�

A second motivation for the present study is the use of the continued
fraction expansion of algebraic numbers in solution methods for certain
diophantine inequalities� For example� in 
��� the Diophantine inequality



jx� � x�y � �xy� � y�j � ��� �

known to have just �nitely many integral solution pairs �x� y	� is solved
for jyj � ����� with the help of the computation of a �modest	 number
of partial quotients of the continued fraction expansion of one of the real
roots of the third degree polynomial x� � x� � �x� ���

� Notation and Error Control

��� Notation

Let � be a real number � �� The continued fraction expansion of � is
de�ned by

� � a� �
�

a� �
�

a� �
�

� � �

where ai � b�ic� �i�� � ����i � ai	� i � �� �� � � � � with �� � �� The
positive integers a�� a�� � � � are called the partial quotients of � and the
real numbers �i are referred to as its complete quotients� It is convenient
to write

� � 
a�� a�� a�� � � � � � 
a�� a�� � � � � an� �n����

where �n�� � 
an��� an��� � � � ��
If � is rational� say � � u�v� then its continued fraction expansion

terminates �with some �i � �	 and the basic method is nothing other
than the Euclidean algorithm for computing the greatest common divisor
of u and v�

The rational approximation


a�� a�� � � � � an� �
pn
qn

of � is called the n�th convergent of �� The numerators and denominators
of these approximations are computed by the formulas

pi�� � ai��pi � pi��
qi�� � ai��qi � qi��

�
i � �� �� � � � �

where p� � a�� q� � �� p�� � �� and q�� � �� In matrix notation� this is

�Recently	 De Weger ���� has determined the complete set of rational integers x� y
that satisfy the inequality jx��x�y� xy�� y�j � ��� �without an a priori bound on
jyj��
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�
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� �
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a� �
� �

�
� � �

�
ai�� �
� �

�
�

which entails� on taking determinants� that

��	 pi��qi � piqi�� � ���	i� i � �� �� � � � �

��� Error Control

When one computes the partial quotients a�� a�� � � � from a numerical
approximation � of �� one loses precision� The error can be controlled
with the help of the following two lemmas� Lemma � gives a su�cient
condition for b�c � b�c to be true� and Lemma � gives an upper bound
for the relative error in � � � ���� � b�c	 as a function of �� the relative
error in �� and � ��

Lemma � Let � � � be a numerical �rational	 approximation of � � �
with relative error bounded by �� i�e�� � � ��� � �	 with j�j � �� If

��	 �b�c� �	 � � �� b�c � �� �b�c� �	 ��

then b�c � b�c�

Proof� We show that b�c � � � b�c� �� Since � � �� it follows from ��	
that � � ����

First� since �� � � ���� � �	 for � � �� we have

���� �	 �
�

� � �
� ��

Furthermore� � � � �b�c��	 � so that� by the left inequality in ��	� � � �
��b�c� With the above inequality this implies that b�c � ���� �	 � ��

Second� since ���� � �	 � ���� � �	 for � � �� we have

� �
�

� � �
�

�

�� �
�

From the right inequality in ��	� � � �b�c��	����	� so that ������	 �
b�c� �� ut

Lemma � Suppose the conditions of Lemma � hold� and let

�� �
�

�� b�c
� � � �

�

�� b�c
�



Then an upper bound for the relative error in � � with respect to �� is
given by �� ����� � �	�

Proof� We have� for � � ����

�����
� � ��

��

���� �
��������

�

�� b�c
�

�

�� b�c
�

�� b�c

��������
�

���� �� �

�� b�c

���� �
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����� �

�
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���� �

� � �
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�

�� �
� ut

An additional way to control the computation is based on the following
well�known and easily veri�ed property of continued fractions�

Lemma � If 	��	� and 
��
� are rational numbers such that

	�
	�

� � �

�

�
�

then� as long as the partial quotients of 	��	� and 
��
� coincide� those

partial quotients are the partial quotients of �� The �rst time the partial

quotients do not coincide� they provide upper and lower bounds for the

correct value�

This result suggests Lehmer�s method 
�� for reducing the amount of
multi�precision work� Assuming that we have a very accurate rational
approximation u�v of the real number � � � with very large numbers
u and v� we can form a suitable lower and upper bound for u�v just by
taking the �rst ten �say	 decimal digits of u and v� if dlog�� ue � k� take
u� � bu���k���c and v� � bv���k���c and choose�

	� � u�� 	� � v� � �� 
� � u� � �� and 
� � v��

Now we compute partial quotients a�� a�� � � � � ai� of 
��
� and hence of
� as follows�

��	

ai � b
i�
i��c

i�� � 
i � ai
i��� 	i�� � 	i � ai	i��

if 	i�� � � or 	i�� � 	i�� then

i� � i� �� stop
endif

�����
����

i � �� �� � � �

�If v� � �	 the �rst partial quotient of u�v is extremely large	 and we have to
increase the number of decimal digits in u� and v� accordingly�



Notice that we do not have to compute the partial quotients of 	��	� �con�
trary to what is suggested in 
�� p� ����	 since as long as � � 	i�� � 	i���
we are sure that ai is also the correct partial quotient of 	��	��

� After ��	
has stopped� we have to update the fraction u�v by acknowledging the
computed partial quotients a�� a�� � � � � ai� � If i� � �� using a� we replace
u�v by v��u � a�v	� In matrix notation�

�
u
v

�
��

�
� �
� �a�

��
u
v

�
�

In general� using a�� � � � � ai� we have�
u
v

�
��

�
� �
� �ai�

��
� �
� �ai���

�
� � �

�
� �
� �a�

��
u
v

�
�

The product of the � � � matrices in the right hand side is built up
�rst� and next it is multiplied by the vector �u v	T � which is the only
high�precision computation�

� The Basic� Polynomial and Direct Methods

In this section we describe the three methods considered in this study�
namely the basic method� the polynomial method� and the direct method
derived from Shiu�s direct method�

��� The Basic Method

With the notation of Section ���� let �i be a rational approximation of �i
with relative error bounded by �i� The basic method for computing the
continued fraction expansion of � � �� with safe error control �based on
Lemmas � and �	 reads as follows�

��	

ai � b�ic
if �ai � �	 �i � �i � ai � �� �ai � �	 �i then
�i�� � ����i � ai	
�i�� � �i�i���i��� � �i	

else

stop
endif

���������
��������

i � �� �� � � �

�After submitting this paper to the ANTS II Meeting in Bordeaux	 we found out
that H� Cohen gave an algorithm similar to ��� in ��	 p� 	 Algorithm ��������



Since the �i are rational numbers� we can use Lemma � and ��	 to reduce
the amount of multi�precision computations� The numbers �ai��	 �i and
�i�� are computed in � oating�point	 single precision� Since ��	 works
with low�precision approximations 
i�
i�� and 	i�	i�� of �i� some care
has to be taken in the check of the inequalities in ��	 and in the compu�
tation of �i�� from �i in ��	� Here we can use that

	�i
	�i��

� ��i �

�i

�i��

�

and

�i��


�i��
� ��i�� �

	�i��

	�i��
�

as long as a�i and a�i�� are the correct partial quotients of ��i and ��i���
respectively� Detailed information on how this method has been imple�
mented can be obtained from the third author�

From the metric theory of continued fractions it is known 
��� that�
for almost all �� one can compute p partial quotients of � from the �rst
d decimal digits of its decimal representation� where

lim
d��

p

d
�

� log � log ��

��
� ����� � � � �

For example� Lochs 
��� has computed ��� partial quotients of � from its
�rst ���� decimals� and Brent and McMillan 
�� have computed �����
partial quotients of Euler�s constant from ����� decimals �with p�d �
����� � � � 	�

A disadvantage of the basic method is that when we have computed as
many partial quotients as possible from a given initial approximation of �
and then wish to compute more partial quotients� we must �rst compute a
more accurate initial approximation� next use the known partial quotients
to recompute to the new accuracy the last complete quotient already
obtained� and from that extend the list of partial quotients�

��� The Polynomial Method

Let � � � be an an algebraic number of degree d � � with de�ning
polynomial f�x	 �with integral coe�cients	� that is f��	 � �� Say f�x	 is
reduced if it has the three properties�

�i	 its leading coe�cient is positive�
�ii	 it has a unique simple zero � � ��
�iii	 its remaining zeros lie in the left half of the unit circle�



The polynomial method 
�� for computing the continued fraction expan�
sion of � reads as follows� Set f��x	 � f�x	�

�	
ai � maxfn � N� fi�n	 � �g
gi�x	 � fi�x� ai	
fi���x	 � �xdgi���x	

��
� i � �� �� � � �

It is easy to see that f��x	 is reduced if f��x	 is and that the unique
positive root of f��x	 is given by ���� � a�	� It follows that the unique
positive root of the polynomial fi�x	 is the i�th complete quotient of the
continued fraction expansion of �� and that this algorithm �nds the cor�
responding partial quotients� The time�consuming work lies in the com�
putation of the coe�cients of fi���x	 from those of fi�x	 �which grow
with i	� The number ai can be computed quickly as follows� If we write
fi�x	 � ci�dx

d � ci�d��x
d�� � � � � � then the sum of the roots of fi�x	 is

given by si � �ci�d���ci�d� Since� for i � �� the remaining d � � roots
of fi�x	 are all located in the left half of the unit circle� the number si
approximates ai with an error not greater than d� �� the precise value of
ai may be found from si by trial and error �with an average of �d� �	��
trials	�

It is explained in 
�� that �Vincent�s Theorem	 applying the algorithm
to a zero of an arbitrary irreducible polynomial f�x	 always rapidly yields
a reduced polynomial fi�x	�

In 
�� it is suggested that the polynomial methodmay be accelerated as
follows� From a low�precision approximation of the real root � � of fn�x	�
as many as possible �m� say	 successive partial quotients are computed
with the basic method �and error control	� Next� one computes fn�m�x	
from fn�x	� using an� an��� � � � � an�m��� with less computation than is
needed to compute the coe�cients of all the intermediate polynomials
fn���x	� � � � � fn�m���x	� In fact� the coe�cients of fi���x	 are related to
those of fi�x	 by the transformation �for simplicity� we choose d � �	�

�
B	
ci����

ci����

ci����

ci����



CA � �

�
B	

a�i a�i ai �
�a�i �ai � �
�ai � � �
� � � �



CA
�
B	
ci��
ci��
ci��
ci��



CA �

By accumulating the product of the above � � � matrices which we get
for an� an��� � � � � an�m��� and multiplying the resulting matrix by the
coe�cients of fn�x	� we obtain the coe�cients of fn�m�x	 at the expense
of less arithmetic than when we explicitly compute the coe�cients of all
the intermediate polynomials�



We have carried out some experiments with this acceleration of the
polynomial method� but the resulting code is still slower than our imple�
mentation of the direct method described in Section ����

Nonetheless� an advantage of the polynomial method is that the com�
putation can always be continued� without any recomputation� provided
that we save the exact integral values of the coe�cients of the last used
polynomial fi�x	� To illustrate the growth of these� for f�x	 � f��x	 �
x� � �x � ��� the four coe�cients of f����x	 are integers of �� decimal
digits each� and the four coe�cients of f�����x	 are integers of ��� ���
��� and �� decimal digits� respectively�

��� The Direct Method

The direct method which we formulate here is based on ideas expressed in

�� and 
��� combined with error control facilities described in Section ��
The aim is to compute a very good rational approximation of the complete
quotient �n�� when the partial quotients a�� a�� � � � � an are known� and
from that approximation to compute some n partial quotients of �n���
This is done as follows� We have

� � 
a�� a�� � � � � an� �n��� �
�n��pn � pn��
�n��qn � qn��

�

from which we �nd� using ��	� that

�n�� �
���	n��

qn�pn � �qn	
�

qn��
qn

�

Now using the mean value theorem and f��	 � �� we replace the di�erence
pn�qn � � by f�pn�qn	�f

��pn�qn	� and obtain the approximation

��	 �n�� �
���	n��

q�n

f ��pn�qn	

f�pn�qn	
�
qn��
qn

�

The error in this approximation is approximately

jf ����	j

q�njf
���	j

�
jf ���pn�qn	j

q�njf
��pn�qn	j

�

From this rational approximation of �n��� partial quotients an��� an���
� � � � an�m� � � � can be computed as long as qn�m � bq�n� for some small
b � b��	 � �� The direct method for computing N partial quotients of
the continued fraction expansion of � now reads as follows�



Step �� Use the basic method ��	 to compute a small number of partial
quotients and the corresponding partial convergents of �� say up to an�
pn� qn�

Step �� �Check	 If pnqn�� � pn��qn �� ���	n�� then stop�

Compute the next rational approximation �� of �n�� by

��	 �� �
���	n��

q�n

f ��pn�qn	

f�pn�qn	
�

qn��
qn

�

Let B � bq�n for some suitable constant b � b��	�

Compute the next partial quotients an��� an��� � � � � an�m� � � � with the
basic method ��	 �using Lemma � and ��		 as long as n �m � N and
qn�m � B�

Step �� Put n � n�m� if n � N go back to Step ��

The number of partial quotients which can be computed in Step � is
roughly equal to n so that after the completion of Step �� the number
of partial quotients computed will roughly have doubled compared with
before Step �� Since ��	 is very time�consuming� it is worthwhile to choose
n in Step � such that the last time Step � is carried out it starts with
a value of n which is slightly larger than N��� In the beginning of the
method the behaviour of Step � may be rather erratic� one should there�
fore compute su�ciently many partial quotients of � in Step � to reach
the �stable� behaviour phase of Step � �an approximate doubling of the
number of partial quotients	� In practice� this works for n � ���� but that
may depend on the size of the �rst few partial quotients of the continued
fraction of ��

� Experiments

We have implemented the three methods described in Section � on a SUN
workstation� partially in GP!PARI and partially in Magma� The �rst
package is developed by Henri Cohen and his co�workers at Universit�e
Bordeaux I� the second comes from John Cannon and his group at the
University of Sydney� Initially� we only worked with GP� but at a certain
point in the direct method we ran into problems with the stack size� due
to the enormous size of the integers involved in this method� Later we
learned that these problems can be solved� for example� by programming
PARI in Library Mode� but in the meantime we had learned about the



Magma package at the University of Sydney and decided to experiment
with that� With Magma we did not encounter any stack problems�

In Table � we give some timings withMagma and GP for the basic� the
polynomial� and the direct methods� Based on these results� we decided
to run bigger experiments with our Magma implementation of the direct
method�

In Table � we give the frequency distributions of the �rst ��� ���
partial quotients of the continued fraction of six algebraic numbers� com�
puted by the direct method� For comparison� the last column gives the
frequencies of occurrence of partial quotients j�

log�

�
� �

�

j

�
� log�

�
� �

�

j � �

�

from the well�known Gauss�Kusmin Theorem� Let

K��� n	 � �a�a� � � � an	
���n���

and
L��� n	 � q���n���

n �

Then� for almost all ��

lim
n��

K��� n	 �

�Y
k	�

�
� �

�

k�k � �	

�log k� log �

� ����� � � � �

and

lim
n��

L��� n	 � exp

�
��

�� log �

�
� ������ � � � �

The latter fact implies that for almost all � the number of decimal digits in
qn is about n log�� L � ���n� Table � gives the values of K��� ������	
for the six algebraic numbers which we consider� Table � also lists the
largest partial quotient an found� and the corresponding index n� Only in
case �A	 is there an early occurrence of a large partial quotient �a��� �
�������	� but soon after that the expansion settles down and no further
extremely large partial quotients occur� To illustrate this� Table � lists
an for n � �� � � � � ��� and for n � ������� � � � � ������� The �abnormal�
initial behaviour is explained in 
����

Table � presents� for some values of n� the number of decimal digits
in qn and that number divided by n� The values of n in Table � are those
for which the direct method computes a new rational approximation of
�n� it illustrates the approximate doubling of these n�values� especially
for larger values of n� The last column shows good convergence to the
expected value C� � ������ log � log ��	 � ����� � � � �



� Conclusion

We have compared three di�erent methods �the basic� the polynomial�
and the direct method	 for computing the continued fraction expansion
of algebraic numbers� and observed that the direct method is the most
e�cient one in terms of CPU�time and memory� at least for our implemen�
tations �in GP!PARI and Magma	� We have applied the direct method
to the computation of ������� partial quotients of six di�erent algebraic
numbers� and found no apparent deviation from the theory of Khintchine
and L�evy� which holds for almost all real numbers�
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