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Abstract

A cycle is a sequence taken in a circular order—that is, follows , and

are all the same cycle as . Given natural numbers

and , a cycle of letters is called a complete cycle [1, 2], or De Bruijn

sequence, if subsequences consist of all possible ordered

sequences over the alphabet . In 1946, De Bruijn proved [1] (see

[2]) that the number of complete cycles, under , is equal to .

We propose the overall proof for , which determines the number of the De Bruijn

sequences to be equal to . The demonstration is based on our recent results con-

cerning the characteristic polynomial and permanent of the arc-graph [17], applied herein

to some auxiliary digraphs.

Wherever possible, the main subject is discussed in the wider context of related combi-

natorial problems, which first include counting the linear De Bruijn sequences.

Obtained results can be used for calculating the number of monocyclic and linear com-

pounds, formed from sorts of atoms, obeying the specified combinatorial restrictions. The

former is equivalent to finding the number of respective necklaces with kinds of beads.
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1 Introduction

This paper was provoked by the study of complex sequences being carried on by the re-

search group under the supervision of Profs. Edward Trifonov and Alexander Bolshoy, in the

Genome Diversity Center of the University of Haifa (see [24–29]). In particular, Dr. Valery

Kirzhner defined a minimal generating sequence in DNA as the sequence of minimal length

that produces all possible amino acids; thus, it should contain all triplets of nucleotides, taking

into account the table of identity of some triplets. Such a minimal sequence is, in some sense,

the most complex; and the mathematical formalization of it leads to De Bruijn sequences.

As the first stage of work, our main objective herein is counting the generalized De Bruijn

sequences, or else minimal generating sequences containing all words of a given length over

a given alphabet, which disregard the equivalency of some triplets, specified by their identity

table. Additionally to this topic, we supplement a brief discussion of its general background

[1–12] that touches similar mathematical problems and their possible applications.

More specifically, one can consider all possible words, or -ary sequences, consisting of

characters over the alphabet . Further, it can be proposed to construct the shortest

(of length ) circular sequence that contains exactly once every possible -character sequence,

as its subword. In this closed cycle, every two adjacent -subwords have exactly letters in

common while each -character subword has exactly 2 adjacent neighbors. A circular sequence

possessing these properties is called a complete cycle (see [1, 2]), or De Bruijn sequence, due

to N. G. De Bruijn who published the first paper on the subject [1]. (Note that his surname, in

the literature, is also spelled by himself and other authors as de Bruijn and DeBruijn.)

Herein, we can already utilize, as a ready fact (see [1–3]), that such sequences do exist; our

task remains to calculate their number for any given pair and of positive integers

. De Bruijn proved, in 1946, that the number of complete cycles, under =2, is . The

graph-theoretical ideas of his proof (see [1,2]) hold good for the general case as well. In a few

words, the proof includes the construction of some auxiliary digraphs (also called De Bruijn

graphs [3]) and the subsequent count of all Eulerian circuits in these graphs. The latter task

can easily be performed by merging well-known methods [13–16] with our latest results on

the spectrum of the arc-graph [17]. The targeted quantity equals and resembles the

partial De Bruijn result [1], in notation.

To return to the above genetical problem, one should realize that the mathematical biolo-
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gist needs, first of all, to count linear De Bruijn sequences, which are the shortest unclosed

sequences consisting of the same sets of -character -ary subwords. Because a complete cycle

is circularly asymmetric, by definition, cutting it in any of possible positions results in

distinct -words, if one reads them only from the beginning. However, these linear words must

be curtailed because one can find only original -subwords of the respective complete

cycle, in any of them. But this situation can be corrected by adding the first characters of

an obtained unclosed word to its end, which results in a longer -character word that

already contains every -character subword of the respective complete cycle exactly once. The

obtained word is a linear De Bruijn sequence.

Since cutting a complete -cycle in all possible ways gives rise to linear De Bruijn

sequences, the number of these sequences is equal to . Under this, together with each

complete cycle, there should independently be considered its mate, wherein the same sequence

of letters is read in the opposite direction.

Aside from biological objects, the properties of closed and unclosed De Bruijn sequences

can be utilized in the synthetical chemistry of cyclic and linear molecules, respectively. Cases

in point are engineering and design of new reagents for Analytical Chemistry or drugs that em-

ploy the principles of Combinatorial Chemistry. At the first stage of synthesis, when the general

prognosis should be done, the researcher is much interested in devising ”the most concentrated”

all-inclusive molecule which allows one to simultaneously incorporate, in one reagent, all spa-

tial compositions of reactive groups to be attested. Moreover, such a substance should enable

every mentioned composition of groups (in our case, displayed by a different segment of a De

Bruijn sequence) to contest for the best credits under equal starting conditions. Then, when the

optimal molecular substructures are already determined, one can turn to the synthesis of rather

simple molecules that exclude ”badly behaved” parts of the first ”supermolecule”. Clearly, such

a tack could economize syntheticist’s time.

The last chemical example, even though it was described briefly, puts forward the idea of

replacing an intact De Brujn -sequence with all possible sets of shorter sequences (collectively

comprising the same set of -subwords); certainly, none of these shorter ones can be a De

Bruijn sequence, by definition. Here, the solution for distributing a complete cycle immediately

comes from our recent finding for the permanent of the arc-graph [17]. Interestingly, the number

of all such sets, including an intact complete cycle, as a one-element set, is exactly equal to the
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number of linear De Bruijn sequences: .

In our opinion, the above problems and their solutions can better be discussed in the wider

context of similar combinatorial questions. However, planning to consider some additional

problems in the subsequent sections, we have no intention whatever to make a detailed survey

in this paper. For this reason, all references will be given in minimal numbers. We would like

only to stress that other trends also exist and are all interesting as well. Wherever possible, we

shall also propose problems that the reader can try to solve. Our general goal is to enhance the

interest of chemists in Mathematics and, conversely, attract mathematicians to the wider range

of problems that come from Chemistry, Biology and other sciences.

Now we must supply mathematical requisites that will be used by us later, in the main

section.

2 Preliminaries

This section culls just all known facts from Combinatorics and (Spectral) Theory of Graphs

that will be needed for proving our targeted results; all information concerning allied areas will

be given in Miscellaneous.

2.1 De Bruijn sequences

A cycle is a sequence taken in a circular order—that is, follows , and

are all the same cycle as . Given natural numbers

and , a cycle of letters is called a complete cycle [1, 2], or De Bruijn sequence, if sub-

sequences consist of all possible ordered sequences

over the alphabet .

In 1946, De Bruijn [1] (see [2]) proved his famous theorem:

Theorem 1 For and each positive integer there are exactly complete cycles of

length .
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In particular, for , there exist the following complete cycles:

Apparently, cutting a complete -cycle in all positions generates distinct

words since any such cycle is circularly asymmetric, by definition. However, every -word

obtained in this fashion contains only basic subwords of length , out of those

belonging to the complete cycle. A minimal word of length that incorporates just

the same set of basic -subwords as an intact complete cycle is called a linear De Bruijn

sequence. Obviously, a linear De Bruijn sequence can be obtained by adding the first

letters of any -word, obtained by cutting a complete cycle, to the end of this word.

The following result can be regarded as a corollary of De Bruijn’s theorem:

Corollary 1.1 For and each positive integer there are exactly linear De Bruijn

sequences of length .

As a brief illustration, we shall consider the cases and 2, as these follow from the above

example for circular De Bruijn sequences:

Another generalization of complete cycle is a De bruijn - of sequences which are not

De Bruin sequences on their own, except for the case when a De Bruijn set consists of exactly

one De Bruijn sequence, but collectively have the same aggregated length and also produce

the same set of all -ary words of length ; see Theorem 11 and Corollary 11.1, in Section 3.

In order to proceed, we need to introduce some graph-theoretical notions (see [13–21]). A

directed graph, or digraph, of order consists of a finite nonempty set of different objects

that are called vertices, or points, together with a given set containing ordered pairs of
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different vertices of the set . A pair , or , of vertices from is called an arc of a

digraph that emanates from a vertex and enters a vertex ; under , an arc

is called a self-loop lying in the point . If an arc exists, in , we say that a vertex

is adjacent to a vertex ; and a vertex and an arc are incident to each other, as well as an

arc and a vertex are. The out-degree of a vertex is the number of arcs that go out

of it, including self-loops; symmetrically, the in-degree of is the number of arcs (and

self-loops) that come into it. In lieu of the term degree, we also use its synonym valency, which

may seem preferable while describing chemical objects.

Following [1–3], we need to define the series of special digraphs

that will be used by us in the further proof; here, the numbers and have the same interpreta-

tion as above. Initially, we set to be a one-vertex graph possessing self-loops. The set

of vertices of a digraph consists of all ordered sequences, or words, of

letters over the alphabet while the set of arcs (and self-loops) is in one-one correspondence

with all words of letters over . Under this, the arc labeled by a word

emanates from a vertex and enters a vertex . In other words,

arcs and share a common incident vertex . It is

easy to see that the arc set of a digraph is simultaneously the vertex set of the

next digraph , in (see [1–3]). But what is rather more important, can

be obtained from by the process that can locally be called taking the arc-graph of

a digraph (see [17] or Subsection 2.3, below); under this, . The mem-

bers of the series were called in [3] (see [6]) De Bruijn graphs. Herein, we shall adapt the

methods applied in [1–3], wherein estimating the number of complete -cycles was reduced to

calculating the number of certain circular walks in the respective De Bruijn graph .

2.2 Counting Eulerian circuits in digraphs

A digraph is called Eulerian if there exists a closed spanning walk traversing every

arc, in , exactly once and consistently with its orientation; under this, the number of arcs

entering any vertex of equals the number of arcs emanating from it. The mentioned closed

walk , in , is called an Eulerian circuit. The circular order of arcs in an Eulerian circuit is

of value because one and the same Eulerian digraph admits more than one Eulerian circuit

whenever the order of circularly touring its arcs may be varied. The last circumstance plays a
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crucial role when Eulerian circuits formalize the cyclical motion of particles in the respective

models of statistical physics, where every possible closed walk of a particle must necessarily

be taken into account [17]. All the above can readily be adapted to undirected graphs if one

considers every edge as a pair of opposite darts. In the last sense, any connected undirected

graph admits at least one Eulerian circuit passing along every edge strictly twice and just in

opposite directions.

The adjacency matrix of an unweighted digraph with vertices is an matrix

of zeros and ones, wherein an entry iff (if and only if) there is an

arc (or a self-loop , if ) that goes out of a vertex and enters a vertex of (see [13–

17; 20, 21]). Another matrix pertaining to is its Laplace, Kirchhoff, or admittance, matrix

, whose entries are defined as follows (see [13–16]):

Thus, the sum of entries in each column of equals 0. Here, we do not consider an equivalent

version of , wherein similar manipulations involve the columns of the original matrix ,

instead. The reader can consider on his/her own, as an exercise, substituting the respective

in-degrees for the out-degrees , in the definition of above.

Every Laplace matrix (or ) of an Eulerian digraph has the property that all

its cofactors (or ) are equal; moreover, here, as well (see [13–16]). Just in

case, we recall that a cofactor is the respective minor, of , multiplied by , where

the mentioned minor is in turn the determinant of an matrix ,

obtained by scoring out the row and column in .

The common cofactor of the Laplace matrix of an Eulerian digraph

is equal to the number of oriented spanning trees that go out of (or come into) any vertex of

(see [13–16]).

At this point, we shall cite the famous matrix-tree theorem for graphs (see [13-16]), which

was first proven by De Bruijn and van Aardenne-Ehrenfest [18], viz.:

Theorem 2 The number of Eulerian circuits in a labeled Eulerian digraph is equal to

(1)

where is the common value of cofactors in ; and .

7



Theorem 2 plays a very important role herein due to the following statement that comes

hand in hand with it (see [1–3]):

Proposition 3 The number of complete cycles of length over the alphabet

is equal to the number of Eulerian circuits in the respective De Bruijn graph

.

(Sketch.) By the definition of a De Bruijn digraph , every arc of it corresponds to

a distinct word of length over the alphabet ; and all these arcs together exactly comprise all

possible -ary words of letters. Since each Eulerian circuit, in , traverses each of its

arcs exactly once, it is in one-one correspondence with one complete cycle. Hence, we at once

arrive at the proof.

Some facts from the Spectral Theory of Graphs [16] are needed for us right now, before

beginning the next subsection. Let denote the identity matrix, that is, a diagonal matrix,

whose diagonal entries are all 1s while the other entries are all 0s. The characteristic polynomial

of a (di-)graph is the characteristic polynomial of its adjacency matrix (see

[16]); that is,

Similarly, the Laplacian polynomial of is defined (see [16]):

Herein, we need to employ the spectral method [16] of calculating the common cofactor

. Since all cofactors of are equal to , one can deduce, in particular, that the

principal minors of are all equal to . From the Spectral Theory of Graphs

(or Matrices) [16], it immediately follows that

(2)

where .

However, for all regular digraphs (with , as we have for De

Bruijn graphs) the Laplacian polynomial can readily be calculated through the respec-

tive characteristic polynomial as follows:

(3)

8



Therefore, we arrive at an equivalent result, earlier derived for multigraphs by Hutschenreuther

[19] (see p. 39 in [16]), viz.:

Proposition 4 The common value of the cofactors in can be calculated as

(4)

We shall use this result in the next subsection.

2.3 Spectral properties of the arc-graph

Part of the information about the properties of the arc-graph will be borrowed by us from

our previous paper [17]; other properties will be proven directly in this subsection.

Let be a digraph with the set of vertices and set of arcs (self-loops, if

any, are considered as self-adjacent arcs whose head and tail coincide); , . The

arc-graph of a digraph is a derivative digraph whose vertex set is the

set of arcs of ; each ordered pair and of arcs, of , is a pair of adjacent vertices in

iff the head of coincides with the tail of , whether the remaining tail and head

coincide or not.

For the sake of completeness, note that the arc-graph of an undirected graph

can also be constructed if we initially replace each edge with a pair of opposite

darts , which results in the so-called symmetric digraph

( + number of self-loops, if any), and then revert to the

above pattern.

Rosenfeld [17] obtained the following general result:

Theorem 5 Let and be the characteristic polynomial of an arbitrary

weighted (di-)graph and that of its arc-graph , respectively. Then

(5)

where and are the numbers of vertices in and , respectively.

In other words, the spectra of and may differ only in the number of zero eigenvalues

and this difference in the multiplicities is .
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The Greek character ” ” in ” ” can be considered as an operator transforming a

graph into another one . This operator has some remarkable properties. In particular, it

can give for any Eulerian digraph with not less than 2 proper arcs out-going from

each of its vertices , and an arbitrary number of self-loops, an infinite series of such di-

graphs:

, whose spectra differ only in the number of zero eigenvalues.

The reader familiar with [1–3] can immediately see that an instance of the last series

of digraphs is the series of the De Bruijn graphs, whose original definition obeys the

same -constructive property (see above). In other words, this is tantamount to the following

statement:

Proposition 6 The series of De Bruijn graphs is a recurrent sequence of

digraphs, wherein is a one-vertex digraph with self-loops and .

To prove it, one should compare the criteria of the adjacency of arcs in , recon-

sidered as vertices of , given in [1–3] and in [17]. Since the two criteria coincide for

constructing all the graphs in , the proof is immediate.

Now we can readily calculate the characteristic polynomial of a digraph ;

the solution will be stated as

Lemma 7 The characteristic polynomial of is

(6)

By virtue of Proposition 6, the repetitive application of Theorem 5 demonstrates that

every digraph possesses only the nonzero eigenvalue (namely, that of

the one-vertex digraph , with self-loops). Since the number of vertices in a digraph is

equal to , it possesses exactly zero eigenvalues. Considering all eigenvalues

together, we at once arrive at the proof.

Proposition 4 and Lemma 7 immediately afford, as their common corollary, the following

Lemma 8 The common value of cofactors in a Laplace matrix of a digraph

is equal to

(7)
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First, calculate , using the R.H.S. of (6) for it:

Hence, under , Proposition 3 gives

which is the proof.

Another important property of the operator is that ”unties” every Eulerian circuit

of a graph , transferring it into an oriented cycle of with the same

weight . Here, we recall that the weight of any cycle , in an arbitrary

digraph , is the product of the weights of arcs comprising . Moreover, assures one-to-one

correspondence between the set of all Eulerian circuits on and the set of all oriented cycles

of .

We shall also present a partial result for the tail coefficient of the permanental polynomial

of the arc-graph of an Eulerian digraph . In particular, may be the

above symmetric digraph and, consequently, the arc-graph of an undirected graph

can also be considered below in place of . The reader interested in calculating the tail

coefficient for all sorts of weighted Eulerian (di-)graphs can see [17], where this problem was

completely resolved.

First, it is worth recalling that the permanental polynomial of a weighted di-

graph is the permanental polynomial of its adjacency matrix ; herein,

, where is a diagonal identity matrix (see p. 34 in [16]).

Thus, the tail coefficient of is simply of the adjacency matrix .

Below, we shall derive a corollary of the general weighted version that was proven by Rosenfeld

[17], viz.:

Proposition 9 Let be the adjacency matrix of the arc-graph of an unweighted

Eulerian digraph . Then

(8)

where stands for the out-degree of a vertex in ; and the product of factorials is taken

over all (indices of) vertices of .
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We want to specially introduce the definition of Eulerian subcircuit because it may otherwise

seem ambiguous. Namely, an Eulerian subcircuit of a digraph is the Eulerian circuit of its

Eulerian subgraph that takes into account exactly one circular order in which all arcs

of can be traversed. In general, there may be more than one circular order for passing all

arcs of ; therefore, the number of Eulerian subcircuits corresponding to may be more

than 1.

Graph-theoretically, is the number of ways in which all arcs of can be

covered by its arc-disjoint Eulerian subcircuits (see [17]). To facilitate referring to this fact in

the subsequent text, we shall derive the following working corollary of the last proposition:

Corollary 9.1 Let be a De Bruijn digraph. Then the number of ways in

which all arcs of can be covered by Eulerian subcircuits is .

Setting the values and in (8) at once affords the proof.

Also, due to the above ”untying” properties of the operator , the permanent

is the number of spanning cycle covers of (that collectively cover all vertices of ). Therefore,

we can end this subsection by formulating another corollary, viz.:

Corollary 9.2 Let be a De Bruijn digraph. Then the number of ways in

which all vertices of can be covered by oriented cycles is .

Recalling that all vertices of are exactly all arcs of and applying Corol-

lary 9.1 to the last digraph, we immediately arrive at the proof.

At this point, it is time to summarize the tack which will be followed by us, in the next

section.

2.4 Our tack

We shall keep the general ideas expounded in [1–3], according to which the enumeration of

complete -cycles, can be reduced to counting the number of Eulerian circuits in the respective

DeBruin graph . Under this, we shall employ our recent results concerning

the spectral properties of iterated arc-graphs [17], which are exemplified herein by the De Bruijn

graphs. It will enable us to obtain the overall solution for all and . We also plan to

discuss some related combinatorial problems, in Miscellaneous.
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3 Main results

We at once begin this section with its master theorem:

Theorem 10 For positive integers and there are exactly complete cycles

of length .

By virtue of Lemma 8, on the R.H.S. of (1) is equal to (see the R.H.S. of

(7)); and, by definition of the De Bruijn graphs , the degree . With

these specific values on the R.H.S. of (1), Theorem 2 gives

But, by virtue of Proposition 3, is also the number of complete -cycles, whence the

proof is immediate.

Theorem 10 gives, as its elementary corollaries, De Bruijn’s Theorem (Theorem 1, herein)

and Corollary 1.1. Moreover, we can formulate here ”the generalized Corollary 1.1”, viz.:

Corollary 10.1 For positive integers and there exist exactly linear De

Bruijn sequences of length .

It immediately follows from Theorem 10 and the definition of a linear De Bruijn

sequence.

We can also calculate the number of De Bruijn -sets due to the following theorem:

Theorem 11 For positive integers and , the number of De Bruijn -sets is equal

to .

This generalizes the Proof of Theorem 10, where the number of complete -cycle is

calculated as the number of Eulerian circuits of a De Bruijn graph . Now, in lieu

of that, we should consider the number of all possible covers of all arcs of by its Eulerian

subcircuits. But the last number is given by Corollary 8.1 as . Hence, we immediately

arrive at the proof.

Thus, one can come to the following common corollary of Corollary 10.1 and Theorem 11:

Corollary 11.1 For positive integers and the number of linear De Bruijn sequences

of length equals the number of De Bruijn -sets: .
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In our opinion, such a coincidence may lead to new like findings concerning De Bruijn

sequences and/or their generalizations. But, at this point, we must stop our consideration of

this topic and turn to discussing other combinatorial problems that, however, resemble by their

appearance the above ones.

4 Miscellaneous

This section is a small compilation that seems to be close to the main text, done at the au-

thor’s choice. It is a mere discussion of known results and methods [4–12; 20–23] but contains,

at the end, some open problems that can be proposed to the reader.

4.1 Kautz -ary closed sequences

A Kautz - closed sequence is a circular sequence of -ary digits such

that consecutive digits are distinct and all subsequences of length are distinct, too [6]. Thus,

Kautz sequences are non-DeBruijn sequences included in the respective De Bruijn -sets, with

an additional proviso that equal digits may never be adjacent therein. Kautz sequences can also

be represented by the series of Kautz digraphs [6] that resemble De

Bruijn graphs [1–3]. Namely, , where is a complete -vertex digraph without

self-loops, and . Villar [6] proved that Kautz sequences exist for all

lengths except for 1 and , where and is the number of arcs

in a digraph . To the best of our knowledge, counting of Kautz sequences (of admissible

lengths) is hitherto an unsolved problem.

4.2 Other sequences with adjacency restrictions

The enumeration of -ary circular sequences of length is tantamount to the enumera-

tion of -bead necklaces with kinds of beads (and other combinatorial restrictions, if any).

Namely, the latter interpretation was adopted by Lloyd [8] for enumerating -ary -sequences

with any given restrictions put on the adjacency of different ciphers (which can be adjacent or

self-adjacent and which not). However, it should be noted that his calculation always considers

two circular sequences as equal if one can be obtained from the other by reading the original

sequence in the opposite direction. The instances of De Bruijn and Kautz sequences, however,
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do not admit such reversing of the circular order. Nevertheless, the work of Lloyd [8] is of

paramount importance for chemists whenever they want to know the number of cyclic substitu-

tional isomers with a given number of sorts of substituents and specified adjacency restrictions

put on them.

In Graph Theory, it is known that the number of colorations of a labeled -cycle

with colors provided that no two adjacent vertices are colored the same color is equal to

; see Theorem IX.23 in [15]. The respective result for a labeled path spanning

vertices is ; see Theorem IX.24 in [15]. Here, we recall that labeled graphs take

into account no symmetry whatever, even if they possess it. Nevertheless, using the so-called

inclusion/exclusion principle (see [20–22]) enables one to utilize the results concerning labeled

graphs for enumerating the colorations of the respective unlabeled graphs with a given group

of automorphisms (or symmetry group) [20–22], and even with a given monoid (semigroup) of

endomorphisms [22]. From the general combinatorial point of view, the same procedure works

equally well for -ary sequences, too.

From among other sequences, we shall pick herein only few [9–12; 23]. In particular, [9–

10] investigate the square-free words; in these, subwords , wherein is an arbitrary block

and is the first letter of it, are forbidden. Overlapping words and special circular codes have

been considered in [11] and [12], respectively. Finally, uncancelable sequences of the elements

of a finite regular monoid that exclude subsequences of type , wherein and are inverses

in , are of use in an algebraic treatment of genomic sequences [23], proposed by the present

author.

Now we shall turn to posing some problems that follow from the whole text above.

4.3 Open problems

The following problems will represent only a very small part of the problems that could be

posed in such a case.

1. To enumerate -ary circular sequences of length that are included

in all De Bruijn -sets with fixed positive integers and ; and .

2. To enumerate subsequences of length of all linear -ary De

Bruijn sequences of length with fixed positive integers and ; and .

3. To enumerate -ary Kautz sequences of length .
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4. To enumerate -ary subsequences without subwords of type .

Some other sequences, whose consideration is omitted herein, are planned to be considered

in our next publications.
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